Acid Base Chemistry & Metabolism

Dr. Phillip Carpenter medpathwaymcat

Med-pathway

Your online MCAT Prep testing center developed by medical school professors

Bronsted-Lowry Acids/Bases

Bronsted-Lowry Acid	Donates Protons
Bronsted-Lowry Base	Accepts Protons

Bronsted-Lowry Acids/Bases: Capable of donating and accepting protons, respectively. The system is also limited as it only focuses on protons.

Bronsted-Lowry Acids/Bases

Bronsted-Lowry Acid	Donates Protons
Bronsted-Lowry Base	Accepts Protons

Bronsted-Lowry Acids/Bases: Capable of donating and accepting protons, respectively. The system is also limited as it only focuses on protons.

HCl \longrightarrow H⁺ + Cl⁻ Completely dissociated

Weak Conjugate Base

Strong

 $K_a = Large$

Bronsted-Lowry Acids/Bases

Bronsted-Lowry Acid	Donates Protons
Bronsted-Lowry Base	Accepts Protons

Bronsted-Lowry Acids/Bases: Capable of donating and accepting protons, respectively. The system is also limited as it only focuses on protons.

Conjugate Bases and Leaving Groups

Relative Rates of Product Formation?

Conjugate Bases and Leaving Groups

HI > HBr > HCl > HF = Relative Strength of Acids

Conjugate Bases and Leaving Groups

Best leaving group

Worst leaving group

Acid/Base Catalysis as Leaving Groups

R-NH⁻ vs R-NH₂ leaving groups

What is the pH of a 0.2 M solution of a weak acid (HA) with a $K_a = 1.8 \times 10^{-4}$?

What is the pH of a 0.2 M solution of a weak acid (HA) with a $K_a = 1.8 \times 10^{-4}$?

Weak acids do not completely dissociate into protons and their conjugate bases. Set up an ICE table describing the initial and final changes for the components of the following equilibrium:

 $\mathbf{H}\mathbf{A} = \mathbf{H}^+ + \mathbf{A}^-$

ICE Table: Initial Change Equilibrium

What is the pH of a 0.2 M solution of a weak acid (HA) with a $K_a = 1.8 \times 10^{-4}$?

Weak acids do not completely dissociate into protons and their conjugate bases. Set up an ICE table describing the initial and final changes for the components of the following equilibrium:

 $\mathbf{H}\mathbf{A} = \mathbf{H}^+ + \mathbf{A}^-$

ICE Table:
Initial
C hange
Equilibrium

	[HA]	[H+]	[A ⁻]
Initial	0.2M	10 ⁻⁷ M	0 M
Change	- X	+ X	+ X
Final	0.2M -X	+ X	+ X

 $HA = H^+ + A^-$

1.8 X 10⁻⁴ = $\frac{[X][X]}{0.2M - X} = \frac{X^2}{0.2M}$

 $X^2 = 3.6 \times 10^{-5}$

X = .006

 $K_{A} = \frac{[H^{+}][A^{-}]}{HA} = \frac{[X][X]}{0.2M - X}$

Autoionization of water Is negligible

pH = -log [.006] = ??

pH = -log [.006] = ??

		[H*]	[pH]	
4. 3.	1.3 2.2	0.001 M	3.0	Log [.001] = -3.0
C. D.	3.4 4.1	0.006 M	2.22	
		0.01 M	2.0	Log [.01] = -2.0

Arrhenius Acid	Increases [H ⁺] in solution
Arrhenius Base	Increases [HO ⁻] in solution

Arrhenius Acids/Bases: The Arrhenius definition of an acid is limited as it only focuses on water as the solvent.

$$HCI \longrightarrow H^+ + CI^-$$
$$H_2O + H^+ \longrightarrow H_3O^+$$

NaOH \longrightarrow Na⁺ + OH⁻

Lewis Acid	Electron Pair Acceptor
Lewis Base	Electron Pair Donor

Lewis Acids/Bases: Electron pair acceptors and donors, respectively. The Lewis acid/base definition focuses on what electrons are actually doing in a reaction.

:NH₃ = Lewis Base (Nonbonding electrons)

F B F F

Nucleophile

Electrophile

3 Acid/Base Systems

Arrhenius Acid	Increases [H ⁺] in solution
Arrhenius Base	Increases [HO ⁻] in solution
Bronsted-Lowry Acid	Donates Protons
Bronsted-Lowry Base	Accepts Protons
Lewis Acid	Electron Pair Acceptor
Lewis Base	Electron Pair Donor

Arrhenius Acids/Bases: The Arrhenius definition of an acid is limited as it only focuses on water as the solvent.

Bronsted-Lowry Acids/Bases: Capable of donating and accepting protons, respectively. The system is also limited as it only focuses on protons.

Lewis Acids/Bases: Electron pair acceptors and donors, respectively. The Lewis acid/base definition focuses on what electrons are actually doing in a reaction.

Relative Strengths of Acids

 $pK_a = -log [K_a] pK_a + pK_b = 14$

 $H_2O = H^+ + HO^- K_w = 10^{-14}$

Relative pK_a values

Henderson Hasselbalch

Q: What is the fraction of histidine residues that are positively charged at pH = 7.4?

Henderson Hasselbalch

than in acidic, positively charged form.

Titration of Strong Acid w/ Strong Base

moles of base added =
number of moles of acid
present in the solution

Titration Curves

Titrations

A compound was titrated as shown. What is the K_a value of the compound?

Titrations

The titration is between a weak base and an acid as the pH decreases with the addition of titrant.

Observe from the titration that the inflection point (where the slope = 0), represents the pK_b. Therefore, pOH = pK_b = 10. Recall that $K_b = 10^{-pKb} = 10^{-10}$ and $K_aK_b = K_w = 10^{-14}$. Therefore, $K_a = 10^{-14}/10^{-10} = 10^{-4}$.

Amino Acid Titrations

Which of the following amino acids best fits the titration profile shown below?

Lysine Titration

Isoelectric Point

What is the isoelectric point of arginine?

рКа₁ = 2.0 H₃N— **pKa₂ = 11.0** + =NH₂ **pKa₃ = 12.0** H_2N

Isoelectric point of arginine?

 $pl = (11 + 12) \times 0.5 = 11.5$

Relative pK_a Values

Which of the following forms of serine would fail to exist at any pH? Α В NH_2 NH_2 OH HO С Π + + NH_3 NH₃ ΩН OH HO

Relative pK_a Values

Carbonic Acid Buffering System

2 Pyruvate + 2 NADH + 6 ATP = Glucose + 2 NAD⁺ + 6 ADP + 6 P_i

Metabolic Acidosis: The Kidney

Physiological Goal: To Raise Blood pH levels

Workshop Passages

www.med-pathway.com/register

First name *	Last name *
Your email address *	/
your@email.com	
Your password *	
Ð	
Confirm your passwo	rd *
f	
I have a workshop acces	s code.

Already have a account? Log in here.